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The repeated oxidation and reduction of a redox species (redox
cycling) in a gap between two working electrodes has primarily
been used to study the kinetics of electrochemical reactions.
New fabrication methods have allowed the gap between the
two working electrodes to be reduced to 10’'s of nanometers in
size. This reduced nanogap width has allowed recent
innovations such as single molecule electrochemistry and
probing the effect of electrical double layer on molecular
transport at electrode/electrolyte interfaces.
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Introduction

A nanogap electrochemical cell is created by precisely
separating two working electrodes by a 10-100 nm wide
layer of electrolyte, as depicted in Figure 1. The poten-
tial of each electrode is controlled independently with re-
spect to a reference electrode in the bulk solution (i.e.,
outside the nanogap) and the current at each electrode
measured separately. Typically nanogap electrochemical
cells are operated in a generation/collection configura-
tion [1], where one electrode is held at an oxidizing po-
tential and the second electrode at a reducing poten-
tial, allowing a redox species to be oxidized at one elec-
trode, transported across the nanoscale gap between the
electrodes (by a combination of diffusion, migration and
convection) and then be reduced at the second elec-
trode. The nanogap traps the redox species and allows
the redox species to repeatedly cycle between the two
electrodes, which leads to a greatly enhanced electro-
chemical signal, a process called redox cycling (or posi-
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tive feedback in the scanning electrochemical microscopy
literature) [2].

The idea of redox cycling in a gap between two working
electrodes was developed 50 years ago as twin-clectrode
thin-layer electrochemistry by Reilley and coworkers
[3,4°°], based on the earlier work on thin-layer electro-
chemistry [5]. This early work focused on micrometer
scale gaps between electrodes and measuring the kinet-
ics of electrochemical reactions. Recent developments in
device fabrication, either using nanolithographic meth-
ods or scanning electrochemical microscopy techniques,
have allowed creation of gaps on the length scale of 10's
of nanometers. The development of the nanogap elec-
trochemical cell has provided a means to investigate sin-
gle molecule electrochemistry and the effect of the dou-
ble layer on molecular transport at charged interfaces.
A nanogap electrochemical cell also provides an inter-
esting configuration for electroanalytical sensing applica-
tions due to the very high signal amplification that is gen-
erated by redox cycling, an aspect not covered here but
discussed in detail elsewhere [6].

Nanogap fabrication

Fabrication of nanogap electrochemical cells is challeng-
ing, especially for nanogaps with widths less than 100 nm
due to imperfections in the fabrication process leading
to contact and shorting between the two electrodes. The
two main methods of fabrication include either using pho-
tolithographic methods to define the two closely spaced
electrodes [7] or using a scanning electrochemical micro-
scope to bring two electrodes close together [2].

Photolithographic methods rely on the patterned deposi-
tion thin films of electrode material onto a substrate. The
first electrode is deposited on a planar substrate, followed
by a sacrificial separator layer and then by the second elec-
trode to give structures like is shown in Figure 2A [8°°].
The sacrificial layer is removed, typically by electrochem-
ical etching, leaving the two working electrodes separated
by a nanogap that can be subsequently filled with solu-
tion. Different nanogap widths can be created simply by
altering the thickness of the sacrificial layer. Recently re-
ported variations of the photolithographic fabrication pro-
cedure include work by Bohn and coworkers in which an
array of nanopores is created in a photolithographic de-
fined electrode—separator—clectrode stack by focused ion
beam [9] or by reactive ion etching to create an array of
ring-disk electrodes as is shown in Figure 2B [10°]. Sim-
pler fabrication processes can be used to create 2D and 3D
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Figure 1
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Diagram of redox cycling in a nanogap electrochemical cell with two
working electrodes separated by a thin layer of electrolyte and a
reference/counter electrode in the bulk of solution.

interdigitated electrode arrays [11-13] or nanogap trans-
ducers [14,15] which allow redox cycling between two
working electrodes arranged on a planar surface but with
a reduced cycling efficiency as redox species are not fully
confined within a nanogap and therefore can diffuse away
from the electrodes into the bulk of the solution.

The second popular method to create a nanogap between
two working electrodes is to use scanning electrochemical
microscopy to position a small electrode close to a second
larger electrode, as shown in Figure 2C [16°°]. The scan-
ning electrochemical microscopy method allows nanogap
size to be controlled simply by moving the two electrodes
closer or further apart. In addition, the ability to decon-
struct the nanogap and clean the electrode surfaces can
be advantageous.

Figure 2

Single molecule electrochemistry

Measuring the electrochemical response from a sin-
gle molecule requires that there be only one molecule
present in the nanogap cell volume. This can be achieved
by reducing the concentration of redox species or by re-
ducing the nanogap volume. This approach was origi-
nally demonstrated by Fan and Bard [17°°], and Sun and
Mirkin [18] using a nanogap created using a scanning
electrochemical microscopy approach.

In recent work Lemay and coworkers have continued
to pioneer single molecule measurements in photolitho-
graphically defined nanogap cells, as shown in Figure 3A
[19,20,21°,22,23°]. The two current traces (one for the ox-
idation current on one electrode and one for the reduction
current on the other electrode) in Figure 3A for the fer-
rocenylmethyltrimethylammonium (F¢TMAT?) redox
couple are measured concurrently and show the redox cy-
cling of single molecules in the nanogap. The current—
time trace in Figure 3A shows four single molecules enter-
ing the nanogap electrochemical cell over the 120 s time
frame, with each resulting in an increase in magnitude of
both the oxidation and reduction currents which return to
baseline when the molecule exits the nanogap.

Single molecule electrochemistry has also been recently
demonstrated using a variation of the scanning electro-
chemical microscopy type nanogap [24]. In this case,
nanogap electrochemical cell was created in a small drop
of solution at the end of a multichannel probe that incor-
porated a working electrode and two open channels, as
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A. Lithographically fabricated nanogap electrochemical cell. Top showing an optical image of the two Pt working electrodes and the sacrificial Cr
layer, and below a diagram of the final cell geometry. (Reproduced with modification from [8].) B. An array of ring-disk nanogap cells fabricated using
lithographically defined electrodes and reactive ion etching. (Reproduced with modification from [10].) C. A nanogap created between the end of a
planar disk-shaped microscale electrode and a larger electrode surface. (Reproduced with modification from [16].)
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A. Single molecule electrochemistry of FCTMA™2+ in a 0.1 M KCI aqueous solution in a lithographically defined Pt-electrode nanogap electrochemical
cell. (Reproduced with modification from [23].) B. Single molecule electrochemistry of FcTMA+2+ in [BMIM][BF4] in a scanning probe configuration
between carbon electrodes in the probe and a Pt substrate electrode. (Reproduced with modification from [24].)

is shown in Figure 3B. The multichannel probe configu-
ration enables the width of the nanogap to be controlled
by moving the probe vertically, and restricts the contact
area between solution and the electrodes and so enabling
both the oxidation and reduction currents to be measured
with very low background noise levels of 2 fA. Typical
traces showing single molecule electrochemistry in this
configuration for the FeTMA*** redox couple are shown
in Figure 3B.

Bohn and coworkers have reported recent work which
used arrays of nanogap sensors to isolate single molecules,
with an average of less than one molecule in each nanogap
in the array [25]. Although the current measurement is
averaged over the entire array of nanogap electrodes,
and therefore the signal from a single molecule cannot
be viewed in isolation, this configuration has the poten-
tial to couple secondary detection methods with single
molecule electrochemical methods.

The theoretical diffusion limited current for a single
molecule in a nanogap, assuming the nanogap is much
longer than it is wide, 1S Ziedox =eD/%% [17], where ¢ is the
charge on an electron, D is the diffusion coefficient and
z 1s the nanogap width. In a 40 nm wide nanogap a sin-
gle molecule of FcTMA™T/>* (which has a diffusion coeffi-
cient of 6 x 107 cm? s™') would be expected to generate
a current of 60 fA. However, as shown in Figure 3A the
experimentally measured current of a single molecule of
FcTMA*2+ in a 40 nm nanogap is only ca., 10 fA. The
discrepancy between the theoretical and measured diffu-
sion limited currents has been attributed to the absorption

of the outer sphere redox species to the electrode surface
[26], which results in the reduction of cycling efficiency
and reduction the magnitude of the measured current.

Single molecule electrochemical measurements have
proved to be experimentally challenging, requiring very
low noise configurations and precisely defined nanogap
cells. In addition, interpreting the inherently stochas-
tic data (most obviously in the Brownian motion of the
molecule [27] but also in the probabilistic absorption of
the molecule to the electrode surface) is not straight for-
ward as it requires averaging together the response of
many single molecules. Looking forward single molecule
electrochemistry needs to expand beyond simple outer
sphere redox species (typically ferrocene derivatives) that
have been popular so far.

Redox cycling with double layer effects

The second recent innovative use of nanogap electro-
chemical cells is to probe electrical double layers. Using
a nanogap electrochemical cell to trap a redox species in
a region that is on the same scale as the electrical dou-
ble layer provides a simple and effective method to probe
the electrical double layer. The nanogap width and the
electrical double layer size can be made commensurate
by either reducing the width of the nanogap or by work-
ing in a low ionic strength solution. In fact even when the
electrical double layer does not span the entire nanogap
the effect of the double layer on the redox cycling can be
significant, for example a double layer effect is still ob-
served at 10 mM [TBAPF;] supporting electrolyte in the
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A. Oxidation current for the cyclic voltammetry for the FCTMA*/2+ redox couple in a 210 nm nanogap cell as a function of supporting electrolyte
concentration. (Reproduced with modification from [29].) B. Reduction current for the cyclic voltammetry of the Ru(NHz)s2t/3* redox couple in a

147 nm nanogap as a function of supporting electrolyte concentration. (Reproduced with modification from [8].) C. Cyclic voltammetry for the
Ru(NH3)s21/3* redox couple in a nano ring-disk array as a function of supporting electrolyte strength. (Reproduce with modification from [10].) D.
Simulated cyclic voltammetry response at a nanoelectrode with and without an electrical double layer close an electrode surface in red, and far from

an electrode surface in black. (Reproduced with modification from [16].)

210 nm nanogap shown in Figure 4A even though the De-
bye length at this ionic strength is only ~3 nm.

Typically, in high ionic strength solutions the electrical
double layer in compressed and composed primarily of
the ions of the supporting electrolyte. However lower-
ing the supporting electrolyte concentration increases the
size of the electrical double layer and also changes the
double layer composition. The electrical double layer has
two primary effects on redox cycling, it concentrates or di-
lutes (depending on the charge state of the redox species)
the redox species in the nanogap and it alters the transport
of the redox species across the nanogap by contributing
to the migration of charged redox species (which can help
or hinder redox cycling depending on the charge of the
particular redox couple) [28]. We have recently reported
both current enhancement and current depression when
lowering of ionic strength in a lithographically fabricated
nanogap electrochemical cell [8,29]. Currents were re-
duced with decreased ionic strength for the F¢TMA*/2+
redox couple as shown in Figure 4A but increased for the
hexaamineruthenium(I1I) (Ru(NHj;),?+*) redox couple

as shown in Figure 4B. A very similar effect was observed
by Bohn and coworkers with the Ru(NH3)s>*+ redox
couple, as is shown in Figure 4C [10,30]. Similar concen-
tration effects have been recently reported by Lu and
Zhang using a thin-layer cell geometry with a single elec-
trode confined within a nanometric volume [31°].

In the FCTMA*2* redox cycling at low supporting elec-
trolyte concentrations the oxidation of the positively
charged FCTMA™ species occurs at an electrode held sig-
nificantly positive of the potential of zero charge, while
the reduction of the FETMAZ* species occurs at an elec-
trode held around the potential of zero charge. The elec-
trode held very positive of the potential of zero charge de-
crease the concentration of redox species in the nanogap
by excluding the positively charge ions from the nanogap.
In addition the positively charged electrode induces mi-
gration which acts to hinder the diffusion of FCTMA™
to the positively charged electrode surface. Both the ion
depletion in the nanogap and the migration of charged
species in the nanogap contribute to a decrease in cur-
rent with a decrease in ionic strength. However, in the
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Ru(NH3)s>™3* redox couple the reduction of the posi-
tively charge ion occurs at an electrode surface held sig-
nificantly negative of the point of zero charge and so
leads to the increase in the redox species concentration
within the nanogap due to electrostatic ion enhancement
as well as an increase in redox cycling due to the addi-
tion of a migration term in the mass transport between the
two electrodes. The effect of the electrical double layer
on redox cycling of the FcTMA*2+ and Ru(NHj), 23+
couples has been modeled using finite-element simula-
tions, which quantitatively predict the observed current
enhancements and depressions [8,29].

Recent work by Mirkin and coworkers also emphasized
that the effect of the electrical double layer in a nanogap
must be considered when calculating the electron-
transfer rate constant, especially for highly charge re-
dox species [16,32]. In a nanogap created using the
scanning electrochemical microscopy approach, Mirkin
showed that the shape of a cyclic voltammogram, such
as those shown in Figure 4D, is strongly influenced by
the electrical double layer. When calculating the electron-
transfer rate the double layer must be considered (i.e., a
Frumkin correction added) otherwise erroneous rate con-
stants could be calculated.

Also of note is work by Amemiya and coworkers who re-
cently reported an asymmetry in cyclic voltammograms
for the FCTMA*?*+ redox couple in a nanogap between
a Pt electrode and a highly orientated pyrolytic graphite
(HOPG) substrate [33]. This promoted ongoing debate
about importance of contamination of the HOPG surface
vs adsorption of the redox species on the electrode and
surrounding glass surfaces [33-35].

In summary, the recent work involving redox cycling in
nanogap electrodes has highlighted the importance of ion
enhancement effects generated by the electrical double
layer as well as the effect of migration on the redox cy-
cling. Nanogap electrochemical cells provide a precisely
controlled platform to probe electrochemical reactions in
confined spaces. In particular nanogap electrochemical
cells can be used to understand the performance of en-
ergy conversion and storage technologies (such as super
capacitors, batteries and fuel cells) where nanoporous and
nanostructured electrodes which confine electrochemical
reactions to nanometric spaces are often used to improve
performance.

Conclusions

Based on the well-established idea of a twin-electrode
thin-layer cell, nanogap electrochemical cells with widths
of less than 100nm provide a power tool for nano-
electrochemical measurements. In particular, as we have
highlighted the electrochemical response of a single re-
dox species as well as effect of the electrical double layer
can be probed using a nanogap of less than 100 nm. Look-

ing forward nanogaps would seem to be the ideal tool to
provide a controlled and tunable analog for nanoporous
and nanostructured electrodes which often feature in new
and emerging energy conversion and storage technolo-
gies.
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